Development a smart forewarning system to assess the occurrence, fate and behaviour of contaminants of emerging concern and pathogens, in waters (FOREWARN)

This project will assess the occurrence, fate and behaviour of contaminants of emerging concern (CECs) and pathogens, and develop machine-learning methods to model their transfer and behaviour and build a decision support system (DSS) for predicting risks and propose mitigation strategies.

Ongoing project

FOREWARN will be focussed on CECs such as antibiotics and pathogens such as antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARG) and emerging viruses, such as SARS-CoV-2. The project will consider 2 types of case studies: 1) In-silico case studies will be selected from previous results, and dataset obtained in past or ongoing EU projects. Data will be used to develop the models and algorithms to feed and develop the DSS system to better understanding the sources, transport, degradation of CECs and pathogens and modelling their behaviour. 2) The adaptive DSS system will be refined and tested under real environmental conditions (6 months) to achieve TRL5 in real environment case studies.

 

Project partners

  • Esteban Abad, CSIC, Spain (Coordinator)
  • Leena Maunula, University of Helsinki, Finland
  • Sandra Martin-Latil, ANSES, France
  • Spyros Pournaras, Attikon University Hospital, Greece
  • Kevin McGuinness, Dublin City University, Ireland

 

Publications