Staphylococcal protein A vaccines
Therapeutics against recurrent S. aureus infection

Olaf Schneewind
Department of Microbiology,
University of Chicago

Conflicts of interest: research support NOVARTIS AG, GSK, JANSSEN; founder IMMUNARTIS, LLC; board member AVACYN, LLC; consulting JANSSEN, CRUCELL, CONTRAFFECT, GSK, MEDIMMUNE, NOVARTIS
S. aureus and MRSA infections in the United States of America

- **S. aureus** is a commensal of the human nares, skin and GI tract as well as an invasive pathogen
- US Department of Defense 2005-2010: **S. aureus skin and soft tissue infection (SSTI)** 122-168/100,000; **bacteremia** 3.6-6/100,000/year
- US DoD 2005-2010 annual incidence: community onset **MRSA bacteremia** 1.2-1.7/100,000; hospital onset 0.4-0.7/100,000
- 2010-2012 prospective study of 30,209 military trainees: 4.15% SSTI; 1.1% MRSA SSTI
- **Very-low-birth-weight infants** (VLBW) in the US 60,000/yr: 3.6% late onset (>72 h post delivery) **bacteremia/meningitis** (26% mortality)
- **End-stage renal disease patients** undergoing hemodialysis annual incidence: invasive MRSA infection 4.2/100 patients
- MRSA infection in **surgical patients** occurs in spite of antibiotic prophylaxis (0.8-1%); **recurrence** is frequent (8-21% for bacteremia patients)
- Are there non-antibiotic means of preventing **Staphylococcus aureus** infection in high risk patients? Immunotherapy, vaccination?

M. Landrum et al. 2012, JAMA 308:50
M.W. Ellis et al. 2014, CID 58:1540
A. Shane et al. 2012, Pediatrics 129:914
D.B. Nguyen et al. 2013, CID 57:1393
Previous and current attempts to develop *Staphylococcus aureus* vaccines *misled by mouse models for preclinical efficacy?*

<table>
<thead>
<tr>
<th>Drug</th>
<th>Company</th>
<th>Mechanism</th>
<th>Target</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>StaphVAX</td>
<td>NABI</td>
<td>Vaccine</td>
<td>CP5/CP8</td>
<td>failed phase 3</td>
</tr>
<tr>
<td>Altastaph</td>
<td>NABI</td>
<td>Antibody</td>
<td>CP5/CP8</td>
<td>ended</td>
</tr>
<tr>
<td>Pentastaph</td>
<td>NABI/GSK</td>
<td>Vaccine</td>
<td>CP5/CP8</td>
<td>failed phase 3</td>
</tr>
<tr>
<td>Aurograb</td>
<td>NOVARTIS</td>
<td>Antibody</td>
<td>lipoprotein</td>
<td>failed phase 3</td>
</tr>
<tr>
<td>Veronate</td>
<td>INHIBITEX</td>
<td>Antibody</td>
<td>ClfA</td>
<td>failed phase 3</td>
</tr>
<tr>
<td>Tefibazumab</td>
<td>INHIBITEX</td>
<td>Antibody</td>
<td>ClfA</td>
<td>ended</td>
</tr>
<tr>
<td>Pagibaximab</td>
<td>BIOSYNEXUS</td>
<td>Antibody</td>
<td>LTA</td>
<td>failed phase 3</td>
</tr>
<tr>
<td>V710</td>
<td>MERCK</td>
<td>Vaccine</td>
<td>IsdB</td>
<td>failed phase 3</td>
</tr>
<tr>
<td>SAR279356</td>
<td>SANOFI</td>
<td>Antibody</td>
<td>PNAG</td>
<td>ended</td>
</tr>
<tr>
<td>NVD3</td>
<td>NOVADIGM</td>
<td>Vaccine</td>
<td>Als3</td>
<td>phase 1/2</td>
</tr>
<tr>
<td>STEBVax</td>
<td>IBT</td>
<td>Vaccine</td>
<td>Seb</td>
<td>phase 1</td>
</tr>
<tr>
<td>SA3Ag</td>
<td>PFIZER</td>
<td>Vaccine</td>
<td>CP5+8/ClfA</td>
<td>phase 2a</td>
</tr>
<tr>
<td>PF-06290510</td>
<td>PFIZER</td>
<td>Vaccine</td>
<td>CP5+8/ClfA/MntC</td>
<td>phase 2b</td>
</tr>
<tr>
<td>MEDI4893</td>
<td>MEDIMMUNE</td>
<td>Antibody</td>
<td>Hla</td>
<td>phase 2b</td>
</tr>
</tbody>
</table>
Staphylococcal protein A (SpA)

- Staphylococcal protein A, a surface protein, binds vertebrate immunoglobulin on the bacterial surface.
- Protein A is comprised of five immunoglobulin binding domains with high sequence conservation.
- Region X spans the cell wall; the sorting signal promotes SpA anchoring to peptidoglycan.
- Protein A blocks antibody-induced opsonophagocytosis of staphylococci.
- All clinical *S. aureus* isolates express protein A.

M. Uhlén et al. 1984, JBC 259:1695
O. Schneewind et al. 1992, Cell 70:267
O. Schneewind et al. 1995, Science 268:103
Anchoring surface proteins to the envelope of *Staphylococcus aureus*
Contribution of surface proteins & sortase to *S. aureus* abscess formation in mice

<table>
<thead>
<tr>
<th>S. aureus</th>
<th>P-value</th>
<th># Abscess (5d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild-type</td>
<td>------</td>
<td>4.4</td>
</tr>
<tr>
<td>sasA</td>
<td>0.2568</td>
<td>2.3</td>
</tr>
<tr>
<td>sdrE</td>
<td>0.5023</td>
<td>2.3</td>
</tr>
<tr>
<td>fnbpA</td>
<td>0.2338</td>
<td>2.1</td>
</tr>
<tr>
<td>fnbpB</td>
<td>0.2074</td>
<td>2.0</td>
</tr>
<tr>
<td>clfB</td>
<td>0.1298</td>
<td>1.9</td>
</tr>
<tr>
<td>sasB</td>
<td>0.1651</td>
<td>1.7</td>
</tr>
<tr>
<td>sasD</td>
<td>0.1272</td>
<td>1.5</td>
</tr>
<tr>
<td>sasC</td>
<td>0.1335</td>
<td>1.4</td>
</tr>
<tr>
<td>sasF</td>
<td>0.3187</td>
<td>1.3</td>
</tr>
<tr>
<td>sasG</td>
<td>0.0770</td>
<td>1.2</td>
</tr>
<tr>
<td>clfA</td>
<td>0.0848</td>
<td>1.1</td>
</tr>
<tr>
<td>isdH</td>
<td>0.0859</td>
<td>1.1</td>
</tr>
<tr>
<td>isdC</td>
<td>0.0737</td>
<td>1.0</td>
</tr>
<tr>
<td>sdrD</td>
<td>0.0265</td>
<td>0.6</td>
</tr>
<tr>
<td>isdB</td>
<td>0.0227</td>
<td>0.5</td>
</tr>
<tr>
<td>isdA</td>
<td>0.0350</td>
<td>0.4</td>
</tr>
<tr>
<td>spa</td>
<td>0.0356</td>
<td>0.4</td>
</tr>
<tr>
<td>srtA</td>
<td>0.0216</td>
<td>0.0</td>
</tr>
</tbody>
</table>

M. McAdow et al. 2011, PLoS Pathog. 7:e1002307
Staphylococcal protein A (SpA)

S. aureus Infection

- **S. aureus**
- Protein A (SpA)
- IgG

Inhibition of opsonophagocytosis

Inhibition of antibody responses

References:

C. Goodyear & G. Silverman 2003, JEM 197:1125
S. aureus spa mutants that cannot bind immunoglobulin

F. Falugi et al. 2013, mBio 4:e00575
Host immunoglobulin is required for \textit{S. aureus} pathogenesis

F. Falugi \textit{et al.} 2013, mBio 4:e00575
Virulence defects of *S. aureus spa* mutants

<table>
<thead>
<tr>
<th>S. aureus</th>
<th>Load / \log_{10}CFU g$^{-1}$</th>
<th>Significance P</th>
<th># Abscesses</th>
<th>Significance P</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild-type</td>
<td>6.20 ± 0.43</td>
<td>--</td>
<td>8.50 ± 1.75</td>
<td>--</td>
</tr>
<tr>
<td>spa_{KK}</td>
<td>5.29 ± 0.41</td>
<td>0.0924</td>
<td>2.50 ± 0.74</td>
<td>0.0023</td>
</tr>
<tr>
<td>spa_{AA}</td>
<td>4.70 ± 0.53</td>
<td>0.0528</td>
<td>5.11 ± 1.41</td>
<td>0.1383</td>
</tr>
<tr>
<td>spa_{KKAA}</td>
<td>4.24 ± 0.47</td>
<td>0.0069</td>
<td>2.85 ± 0.98</td>
<td>0.0065</td>
</tr>
</tbody>
</table>

F. Falugi *et al.* 2013, mBio 4:e00575
Prior infection with the spa_{KKAA} mutant elicits protective immunity against S. aureus re-infection.

F. Falugi et al. 2013, mBio 4:e00575
Antigen-specificity of antibodies in human blood with or without *S. aureus* infection

N. Pauli et al. 2014, JEM 211:2331
Staphylococcus aureus infection expands VH3 plasmablasts (PB) in human blood

N. Pauli *et al.* 2014, JEM 211:2331
Antigen-specificity of PB BCRs (antibodies) in human blood with or without *S. aureus* infection

N. Pauli et al. 2014, JEM 211:2331
S. aureus infection elicits V_H3 clonal immunoglobulin expansion in mice

H. K. Kim et al. 2016, under revision
A model for protein A release from the staphylococcal cell wall

S. Becker et al. 2014, PNAS 111:1574
Peptidoglycan-linked SpA, not recombinant SpA, triggers V_H^3 clonal expansion

H. K. Kim et al. 2016, under revision
Non-toxigenic protein A vaccine (SpA_{KKAA})

H. K. Kim et al. 2010, JEM 207:1863
Efficacy of the SpA_{KKAA} vaccine against *S. aureus* USA300 LAC infection in mice

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Staphylococcal load and abscess formation in renal tissue</th>
<th>log<sub>10</sub> CFU</th>
<th>P-value</th>
<th>Reduction (log<sub>10</sub>CFU)</th>
<th>IgG Titer</th>
<th>Number lesions</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mock</td>
<td></td>
<td>7.20 ± 0.24</td>
<td>–</td>
<td>–</td>
<td><100</td>
<td>4.0 ± 0.8</td>
<td>–</td>
</tr>
<tr>
<td>SpA</td>
<td></td>
<td>6.81 ± 0.26</td>
<td>0.2819</td>
<td>0.39</td>
<td>476</td>
<td>3.3 ± 1.0</td>
<td>0.5969</td>
</tr>
<tr>
<td>SpA<sub>KKAA</sub></td>
<td></td>
<td>3.66 ± 0.76</td>
<td>0.0001</td>
<td>3.54</td>
<td>10,200</td>
<td>1.2 ± 0.5</td>
<td>0.0109</td>
</tr>
</tbody>
</table>

H. K. Kim *et al*. 2010, JEM 207:1863
SpA$_{KKAA}$ as a therapeutic vaccine
Immune responses to S. aureus in vaccinated mice

H. K. Kim et al. 2010, JEM 207:1863
SpA_{KKAA}-derived monoclonal antibodies (SpA$_{\text{KKAA}}$-mAbs)

SpA_{KKAA}-mAbs prevent <i>S. aureus</i> infection in mice

H. K. Kim <i>et al.</i> 2012, Infect. Immun. 80:3460
SpA_{KKAA}-mAb prevents *S. aureus* sepsis in neonatal mice and promotes immunity

V. Thammavongs a *et al.* 2015, *Vaccine* 33:523
Humanized SpA_{KKAA}-mAb prevents $S.\ aureus$ sepsis in neonatal mice

V. Thammavongsa et al. 2015, Vaccine 33:523
Host adaptation of *S. aureus* interpreted as SpA binding to vertebrate immunoglobulin
Guinea pig bloodstream infection with the *S. aureus* spa_{KKAA} mutant

H. K. Kim *et al.* 2015, *mBio* 6:e002369
Immunization of guinea pigs with the SpA\textsubscript{KKAA} vaccine

H. K. Kim et al. 2015, mBio 6:e002369
Summary

• SpA blocks the effector function of human, guinea pig and mouse antibodies directed against staphylococci

• SpA blocks B cell responses in humans > guinea pigs > mice

• SpA\textsubscript{KKAA} immunization protects mice and guinea pigs against \textit{S. aureus} bloodstream infection

• SpA\textsubscript{KKAA} immunization elicits SpA-neutralizing antibodies that enable broad spectrum immune responses against \textit{S. aureus} antigens.

• SpA\textsubscript{KKAA}–mAb administration also enables broad spectrum immune responses in animals with \textit{S. aureus} infection

• The guinea pig model for \textit{S. aureus} bloodstream infection may be useful to predict clinical trial success
Acknowledgements

University of Chicago
Yvonne Chan
Shaynoor Dramsi (Institut Pasteur)
Fabiana Falugi
Carla Emolo
Hwan Keun Kim
Matthew Kieffer
Ryan Ohr
So-Young Oh
Miaomiao Shi
Stephanie Willing
Volker Winstel
Wenqi Yu
Dominique Missiakas

Past laboratory members
Samuel Becker (New York University)
Jonathan Budzik (UCSF)
Alice Cheng (Harvard Medical School)
Andrea DeDent (University of Chicago)
Gwen Liu (Stanford University)
Anthony Maresso (Baylor College of Medicine)
Luciano Marraffini (Rockefeller University)
Sarkis Mazmanian (California Inst. of Technology)
Molly McAdow (Yale University)
William Navarre (University of Toronto)
Eric Skaar (Vanderbilt University)
Hung Ton-That (University of Texas, Houston)
Vilasack Thammavongsa (Regeneron)

Collaborations
UCLA - Kym F. Faull
University of Chicago - Noel Pauli and Patrick Wilson
NIAID /Rocky Mountain Laboratory – Frank DeLeo, Scott Kobayashi, Natalia Malachowa

Supported by NIAID RO1AI038897 and RO1AI052474